CHAPTER 7: SECOND-ORDER CIRCUITS

7.1 Introduction

- This chapter considers circuits with two storage elements.
- Known as second-order circuits because their responses are described by differential equations that contain second derivatives.
- Example of second-order circuits are shown in figure 7.1 to 7.4.

Figure 7.1

Figure 7.2

Figure 7.3

Figure 7.4

7.2 Finding Initial and Final Values

- Objective:

Find $v(0), i(0), d v(0) / d t, d i(0) / d t, i(\infty), v(\infty)$

- Two key points:
(a) The direction of the current $i(t)$ and the polarity of voltage $v(t)$.

Figure 7.5

Figure 7.6
(b) The capacitor voltage is always continuous:

$$
v\left(0^{+}\right)=v\left(0^{-}\right)
$$

and the inductor current is always continuous:

$$
i\left(0^{+}\right)=i\left(0^{-}\right)
$$

- Example:

The switch in Figure 7.7 has been closed for a long time. It is open at $t=0$. Find $i\left(0^{+}\right), v\left(0^{+}\right), d i\left(0^{+}\right) / d t, d v\left(0^{+}\right) / d t, i(\infty), v(\infty)$

Figure 7.7

The switch is closed a long time before $t=0$, thus the circuit has reached dc steady state at $t=0$.
The inductor - acts like a short circuit.
The capacitor - acts like an open circuit.

Figure 7.8

$$
\begin{aligned}
& i\left(0^{-}\right)=\frac{12}{4+2}=2 \mathrm{~A} \\
& v\left(0^{-}\right)=2 i\left(0^{-}\right)=2(2)=4 \mathrm{~V}
\end{aligned}
$$

As the inductor current and capacitor voltage cannot change abruptly,

$$
\begin{aligned}
& i\left(0^{+}\right)=i\left(0^{-}\right)=2 \mathrm{~A} \\
& v\left(0^{+}\right)=v\left(0^{-}\right)=4 \mathrm{~V}
\end{aligned}
$$

At $t=0^{+}$, the switch is open and the equvalent can be drawn as:

Figure 7.9

$$
i_{C}\left(0^{+}\right)=i\left(0^{+}\right)=2 \mathrm{~A}
$$

Since $C \frac{d v}{d t}=i_{C}, d v / d t=i_{C} / C$ and

$$
\frac{d v\left(0^{+}\right)}{d t}=\frac{i_{C}\left(0^{+}\right)}{C}=\frac{2}{0.1}=20 \mathrm{~V} / \mathrm{s}
$$

Similarly,
Since $L d i / d t=v_{L}, d i / d t=v_{L} / L$, applying KVL

$$
\begin{aligned}
& -12+4 i\left(0^{+}\right)+v_{L}\left(0^{+}\right)+v\left(0^{+}\right)=0 \\
& v_{L}\left(0^{+}\right)=12-8-4=0
\end{aligned}
$$

Thus,

$$
\frac{d i\left(0^{+}\right)}{d t}=\frac{v_{L}\left(0^{+}\right)}{L}=\frac{0}{0.25}=0 \mathrm{~A} / \mathrm{s}
$$

For $t>0$, the circuit undergoes transience.
But $t \rightarrow \infty$, the circuit reaches steady state again.
The inductor - acts like a short circuit.
The capacitor - acts like an open circuit.

Figure 7.10
Thus,

$$
i(\infty)=0 \mathrm{~A} \quad v(\infty)=12 \mathrm{~V}
$$

7.3 The Source-Free Series RLC Circuit

- Consider the source-free series RLC circuit in Figure 7.11.

Figure 7.11

- The circuit is being excited by the energy initially stired in the capacitor and inductor.
- V_{0} - the initial capacitor voltage
I_{0} - the initial inductor current
- Thus, at $t=0$

$$
\begin{aligned}
& v(0)=\frac{1}{C} \int_{-\infty}^{0} i d t=V_{0} \\
& i(0)=I_{0}
\end{aligned}
$$

- Applying KVL around the loop:

$$
R i+L \frac{d i}{d t}+\frac{1}{C} \int_{-\infty}^{t} i d t=0
$$

Differentiate with respect to t :

$$
\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{i}{L C}=0
$$

- the second-order differential equation

$$
\begin{aligned}
& R i(0)+L \frac{d i(0)}{d t}+V_{0}=0 \\
& \frac{d i(0)}{d t}=-\frac{1}{L}\left(R I_{0}+V_{0}\right)
\end{aligned}
$$

- Let $i=A e^{s t} \quad$ - the exponential form for $1^{\text {st }}$ order circuit
- Thus, we obtain

$$
\begin{aligned}
& A s^{2} e^{s t}+\frac{A R}{L} s e^{s t}+\frac{A}{L C} e^{s t}=0 \\
& A e^{s t}\left(s^{2}+\frac{R}{L} s+\frac{1}{L C}\right)=0 \\
& \text { or } s^{2}+\frac{R}{L} s+\frac{1}{L C}=0
\end{aligned}
$$

This quadratic equation is known as the characteristic equation since the root of the equation dictate the character of i.

- The 2 roots are:

$$
s_{1}=-\frac{R}{2 L}+\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

$$
s_{2}=-\frac{R}{2 L}-\sqrt{\left(\frac{R}{2 L}\right)^{2}-\frac{1}{L C}}
$$

or

$$
\begin{equation*}
s_{1}=-\alpha+\sqrt{\alpha^{2}-\omega_{0}^{2}}, \quad s_{2}=-\alpha-\sqrt{\alpha^{2}-\omega_{0}^{2}} \tag{7.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{R}{2 L}, \quad \omega_{0}=\frac{1}{\sqrt{L C}} \tag{7.2}
\end{equation*}
$$

- The roots s_{1}, s_{2} are called naural frequencies, measured in nepers per second $(\mathrm{Np} / \mathrm{s})$.
- they are associated with the natural response of the circuit.
- ω_{0} is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second (rad/s).
- α is the neper frequency or the damping factor, expressed in nepers per second.
- 2 possible solutions for i :

$$
i_{1}=A_{1} e^{s_{1} t}, \quad i_{2}=A_{2} e^{s_{2} t}
$$

- $\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{i}{L C}=0$ is a linear equation - any linear combination of the two distinct solutions i_{1} and i_{2} is also a solution for the equation.
Thus,

$$
i(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}
$$

where A_{1} and A_{2} are determined from the initia values $i(0)$ and $d i(0) / d t$

- From Equation 7.1:
(i) If $\alpha>\omega_{0}$ - overdamped case.
(ii) If $\alpha=\omega_{0}$ - critically damped case.
(iii) If $\alpha<\omega_{0}$ - underdamped case
- Overdamped case:
- $\alpha>\omega_{0}$ implies $C>4 L / R^{2}$.
- both roots are negative and real.
- The response,

$$
\begin{equation*}
i(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \tag{7.3}
\end{equation*}
$$

which decays and approaches zero as t increases as shown in Figure 7.12

Figure 7.12

- Critically Damped Case:
- $\alpha=\omega_{0}$ implies $C=4 L / R^{2}$
$-s_{1}=s_{2}=-\alpha=-\frac{R}{2 L}$
- The response,

$$
i(t)=A_{1} e^{-\alpha t}+A_{2} e^{-\alpha t}=A_{3} e^{-\alpha t}
$$

where $A_{3}=A_{1}+A_{2}$

- This cannot be the solution because the two initial conditions cannot be satisfied with the single constant A_{3}.
- Let consider again:

$$
\frac{d^{2} i}{d t^{2}}+\frac{R}{L} \frac{d i}{d t}+\frac{i}{L C}=0
$$

- $\alpha=\omega_{0}=R / 2 L$, thus,

$$
\begin{aligned}
& \frac{d^{2} i}{d t^{2}}+2 \alpha \frac{d i}{d t}+\alpha^{2} i=0 \\
& \frac{d}{d t}\left(\frac{d i}{d t}+\alpha i\right)+\alpha\left(\frac{d i}{d t}+\alpha i\right)=0
\end{aligned}
$$

- Let,

$$
f=\frac{d i}{d t}+\alpha i
$$

- Thus,

$$
\frac{d f}{d t}+\alpha f=0
$$

which is the $1^{\text {st }}$ order differential equation with solution $f=A_{1} e^{-\alpha t}$

- So,

$$
\begin{aligned}
& \frac{d i}{d t}+\alpha i=A_{1} e^{-\alpha t} \\
& e^{\alpha t} \frac{d i}{d t}+e^{\alpha t} \alpha i=A_{1}
\end{aligned}
$$

which can be written as:

$$
\frac{d}{d t}\left(e^{\alpha t} i\right)=A_{1}
$$

- Intergrating both sides:

$$
e^{\alpha t} i=A_{1} t+A_{2}
$$

or

$$
i=\left(A_{1} t+A_{2}\right) e^{\alpha t}
$$

- Hence, the natural response of the critically damped circuit is a sum of two terms: a negative exponential and a negative exponential multiplied by a linear term:

$$
\begin{equation*}
i(t)=\left(A_{2}+A_{1} t\right) e^{-\alpha t} \tag{7.4}
\end{equation*}
$$

Figure 7.13

- Underdamped Case:
- $\alpha<\omega_{0}$ implies $C<4 L / R^{2}$
- The roots can be written as:

$$
\begin{aligned}
& s_{1}=-\alpha+\sqrt{-\left(\omega_{0}^{2}-\alpha^{2}\right)}=-\alpha+j \omega_{d} \\
& s_{2}=-\alpha-\sqrt{-\left(\omega_{0}^{2}-\alpha^{2}\right)}=-\alpha-j \omega_{d}
\end{aligned}
$$

where $\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}$, which is called the damping frequency.

- Both ω_{0} and ω_{d} are natural frequencies because they help determine the natural response.
- ω_{0} is called the undamped natural frequency.
- ω_{d} is called the damped natural frequency.
- The natural response is

$$
\begin{aligned}
i(t) & =A_{1} e^{-\left(\alpha-j \omega_{d}\right) t}+A_{2} e^{-\left(\alpha+j \omega_{d}\right) t} \\
& =e^{-\alpha t}\left(A_{1} e^{j \omega_{d} t}+A_{2} e^{-j \omega_{d} t}\right)
\end{aligned}
$$

- Using Euler's identities,
$e^{j \theta}=\cos \theta+j \sin \theta, \quad e^{-j \theta}=\cos \theta-j \sin \theta$
- We get,
$i(t)=e^{-\alpha t}\left[A_{1}\left(\cos \omega_{d} t+j \sin \omega_{d} t\right)+A_{2}\left(\cos \omega_{d} t-j \sin \omega_{d} t\right)\right]$
$i(t)=e^{-\alpha t}\left[\left(A_{1}+A_{2}\right) \cos \omega_{d} t+j\left(A_{1}-A_{2}\right) \sin \omega_{d} t\right]$
- Replacing constant $\left(A_{1}+A_{2}\right)$ and $j\left(A_{1}-A_{2}\right)$ with constant B_{1} and B_{2}, we get

$$
i(t)=e^{-\alpha t}\left(B_{1} \cos \omega_{d} t+B_{2} \sin \omega_{d} t\right)
$$

- With the presence of sine and cosine functions, it is clear that the natural response for this case is exponentially damped and oscillatory in nature.
- The response has a time constant of $1 / \alpha$ and a period of $T=2 \pi / \omega_{d}$

Figure 7.14

- Conclusions:
(i) - The behaviour of such network is captured by the idea of damping, which is the gradual loss of the initial stored energy.
- The damping effect is due to the presence of resistance R.
- The damping factor α determines the rate at which the response is damped.
- If $R=0$, then $\alpha=0$ and we have an LC circuit with $1 / \sqrt{L C}$ as the undamped natural frequency. Since $\alpha<\omega_{0}$ in this
case, the response is not only undamped but also oscillatory.
- The circuit is said to be lossless because the dissipating or damping element (R) is absent.
- By adjusting the value of R, the response may be made undamped, overdamped, critically damped or underdamped.
(ii) - Oscillatory response is possible due to the presence of the two types of storage elements.
- Having both L and C allows the flow of energy back and forth between the two.
- The damped oscillation exhibited by the underdamped response is known as ringing.
- It stems from the ability of the storage elements L and C to transfer energy back and forth between them.
(iii) - It is difficult to differentiate between the overdamped and critically damped response.
- the critically damped response is borderline and decays the fastest.
- The overdamped has the longest settling time because it takes the longest time to dissipate the initial stored energy.
- If we desire the fastest response without oscillation or ringing, the critically damped circuit is the right choice.
- Example:

In Figure 7.15, $R=40 \Omega, L=4 H, C=1 / 4 F$.
Calculate the characteristic roots of the circuit. Is the natural response overdamped, underdamped or critically damped.

Figure 7.15

$$
\alpha=\frac{R}{2 L}=5, \quad \omega_{0}=\frac{1}{\sqrt{L C}}=1
$$

The roots are

$$
\begin{aligned}
& s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-5 \pm \sqrt{25-1} \\
& s_{1}=-0.101, \quad s_{2}=-9.899
\end{aligned}
$$

Since $\alpha>\omega_{0}$, the response is overdamped.

7.4 The Source-Free Parallel RLC Circuit

- Parallel RLC circuits find many practical applications - e.g. incommunications networks and filter designs.
- Consider the parallel RLC circuit shown in Figure 7.16:

Figure 7.16

- Assume initial inductor current I_{0} and initial capacitor voltage V_{0}.

$$
\begin{aligned}
& i(0)=I_{0}=\frac{1}{L} \int_{\infty}^{0} v(t) d t \\
& v(0)=V_{0}
\end{aligned}
$$

- Since the three elements are in parallel, they have the same voltage v across them.
- According to passive sign conention, the current is entering each element
- the current through each element is leaving the top node.
- Thus, applying KCL at the top node gives

$$
\frac{v}{R}+\frac{1}{L} \int_{-\infty}^{t} v d t+C \frac{d v}{d t}=0
$$

- Taking the derivative with respect to t and dividing by C results in

$$
\frac{d^{2} v}{d t^{2}}+\frac{1}{R C} \frac{d v}{d t}+\frac{1}{L C} v=0
$$

- Replace the first derivative by s and the second derivative by s^{2}.
- Thus,

$$
s^{2}+\frac{1}{R C} s+\frac{1}{L C}=0
$$

- The roots of the characteristic equation are

$$
s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\frac{1}{L C}}
$$

or

$$
\begin{equation*}
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}} \tag{7.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha=\frac{1}{2 R C}, \omega_{0}=\frac{1}{\sqrt{L C}} \tag{7.7}
\end{equation*}
$$

- There are three possible solutions, depending on whether $\alpha>\omega_{0}, \alpha=\omega_{0}$, or $\alpha<\omega_{0}$.

Overdamped Case $\left(\alpha>\omega_{0}\right)$

- $\alpha>\omega_{0}$ when $L>4 R^{2} C$.
- The roots of the characteristic equation are real and negative
- The response is

$$
\begin{equation*}
v(t)=A_{1} e^{s 1 t}+A_{2} e^{s 2 t} \tag{7.8}
\end{equation*}
$$

Critically Damped Case $\left(\alpha=\omega_{0}\right)$

- For $\alpha=\omega, L=4 R^{2} C$.
- The roots are real and equal
- The response is

$$
\begin{equation*}
v(t)=\left(A_{1}+A_{2} t\right) e^{-\alpha t} \tag{7.9}
\end{equation*}
$$

Underdamped Case $\left(\alpha<\omega_{0}\right)$

- When $\alpha<\omega_{0}, \mathrm{~L}<4 \mathrm{R}^{2} \mathrm{C}$.
- The roots are complex and may be expressed as

$$
S_{l, 2}=-\alpha \pm j \omega_{d}
$$

Where

$$
\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}
$$

- The response is

$$
v(t)=e^{-\alpha t}\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right)
$$

- The constants A1 and A2 in each case can be determined from the initial conditions.
- We need $v(0)$ and $d v(0) / d t$.
- The first term is known from:

$$
v(0)=V_{0}
$$

- For second term is known by combining

$$
\begin{aligned}
& i(0)=I_{0}=\frac{1}{L} \int_{\infty}^{0} v(t) d t \\
& v(0)=V_{0}
\end{aligned}
$$

and

$$
\frac{v}{R}+\frac{1}{L} \int_{-\infty}^{t} v d t+C \frac{d v}{d t}=0
$$

as

$$
\frac{V_{0}}{R}+I_{0}+C \frac{d v(0)}{d t}=0
$$

or

$$
\frac{d v(0)}{d t}=-\frac{\left(V_{0}+R I_{0}\right)}{R C}
$$

- The voltage waveforms are similar to those shown in Section 7.3.
- Having found the capacitor voltage $v(t)$ for the parallel RLC circuit as shown above, we can readily obtain other circuit quantities such as individual element currents.
- For example, the resistor current is $i_{R}=v / R$ and the capacitor voltage is $v_{C}=C d v / d t$.
- Notice that we first found the inductor current $i(t)$ for the RLC series circuit, whereas we first found the capacitor voltage $v(t)$ for the parallel RLC circuit.
- Example:

In the parallel circuit of Figure 7.17, find $v(t)$ for $t>$ 0 , assuming $v(0)=5 \mathrm{~V}, i(0)=0, L=1 \mathrm{H}$ and $C=$ 10 mF . Consider these cases: $R=1.923 \Omega, R=5 \Omega$, and $R=6.25 \Omega$.

CASE 1 If $R=1.923 \Omega$

$$
\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 1.923 \times 10 \times 10 \times 10^{-3}}=26
$$

$$
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{1 \times 10 \times 10^{-3}}}=10
$$

Since $\alpha>\omega_{0}$, the response is overdamped.
The roots of the characteristic equation are

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-2,-50
$$

and the corresponding response is

$$
v(t)=A_{1} e^{-2 t}+A_{2} e^{-50 t}
$$

We now apply the initial conditions to get A_{1} and A_{2}.

$$
\begin{aligned}
& v(0)=5=A_{1}+A_{2} \\
& \frac{d v(0)}{d t}=-\frac{v(0)+R i(0)}{R C} \\
& \frac{d v(0)}{d t}=-\frac{5+0}{1.923 \times 10 \times 10^{-3}}=260
\end{aligned}
$$

From $v(t)=A_{1} e^{-2 t}+A_{2} e^{-50 t}$,

$$
\frac{d v}{d t}=-2 A_{1} e^{-2 t}-50 A_{2} e^{-50 t}
$$

At $\mathrm{t}=0$,

$$
260=-2 \mathrm{~A}_{1}-50 \mathrm{~A}_{2}
$$

Thus,

$$
\mathrm{A}_{1}=10.625 \text { and } \mathrm{A}_{2}=-5.625
$$

and

$$
v(t)=10.625 e^{-2 t}-5.625 e^{-50 t}
$$

CASE 2 When $R=5 \Omega$

$$
\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 5 \times 10 \times 10^{-3}}=10
$$

While $\omega_{0}=10$ remains the same.
Since $\alpha=\omega_{0}=10$, the response is critically damped.
Hence, $s_{1}=s_{2}=-10$, and

$$
v(t)=\left(A_{1}+A_{2} t\right) e^{-10 t}
$$

To get A_{1} and A_{2}, we apply the initial conditions

$$
v(0)=5=A_{1}
$$

$$
\frac{d v(0)}{d t}=-\frac{v(0)+R i(0)}{R C}=-\frac{5+0}{5 \times 10 \times 10^{-3}}=100
$$

From $v(t)=\left(A_{1}+A_{2} t\right) e^{-10 t}$,

$$
\frac{d v}{d t}=\left(-10 A_{1}-10 A_{2} t+A_{2}\right) e^{-10 t}
$$

At $t=0$

$$
100=-10 A_{1}+A_{2}
$$

Thus,

$$
\mathrm{A}_{1}=5 \text { and } \mathrm{A}_{2}=150
$$

and

$$
v(t)=(5+150 t) e^{-10 t} V
$$

CASE 3 When $R=6.25 \Omega$

$$
\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 6.25 \times 10 \times 10^{-3}}=8
$$

while $\omega_{0}=10$ remains the same.
As $\alpha<\omega_{0}$ in this case, the response is underdamped.
The roots of the characteristic equation are

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-8 \pm j 6
$$

Hence,

$$
v(t)=\left(A_{1} \cos 6 t+A_{2} \sin 6 t\right) e^{-8 t}
$$

We now obtain A_{1} and A_{2}, as

$$
\begin{gathered}
v(0)=5=A_{1} \\
\frac{d v(0)}{d t}=-\frac{v(0)+R i(0)}{R C}=-\frac{5+0}{6.25 \times 10 \times 10^{-3}}=80
\end{gathered}
$$

From $v(t)=\left(A_{1} \cos 6 t+A_{2} \sin 6 t\right) e^{-8 t}$,

$$
\frac{d v}{d t}=\left(-8 A_{1} \cos 6 t-8 A_{2} \sin 6 t-6 A_{1} \sin 6 t\right.
$$

$$
\left.+6 A_{2} \cos 6 t\right) e^{-8 t}
$$

At $t=0$,

$$
80=-8 \mathrm{~A}_{1}+6 \mathrm{~A}_{2}
$$

Thus,

$$
\mathrm{A}_{1}=5 \text { and } \mathrm{A}_{2}=20
$$

and

$$
v(t)=(5 \cos 6 t+20 \sin 6 t) e^{-8 t}
$$

Note: by increasing the value of R , the degree of damping decreases and the responses differ. The responses for those three cases:

Figure 7.17

7.5 Step Response of a Series RLC Circuit

- Revision: the step response is obtained by the sudden application of a dc source.
- Consider the series RLC circuit shown in Figure 7.18 .

Figure 7.18

- Applying KVL around the loop for $t>0$,

$$
L \frac{d i}{d t}+R i+v=V_{s}
$$

But

$$
i=C \frac{d v}{d t}
$$

Substituting for i and rearranging terms,

$$
\frac{d^{2} v}{d t^{2}}+\frac{R}{L} \frac{d v}{d t}+\frac{v}{L C}=\frac{V_{s}}{L C}
$$

- The solution to the equation has two components: the transient response $v_{t}(t)$ and the steady-state response $v_{s s}(t)$;

$$
v(t)=v_{t}(t)+v_{s s}(t)
$$

- The transient response $v_{t}(t)$ is the component of the total response that dies out with time.
- The form of the transient response is the same as the form of the solution obtained in Section 7.3.
- Therefore, the transient response $v_{t}(t)$ for the overdamped, underdamped and critically damped cases are:

$$
\begin{aligned}
& v_{t}(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \quad(\text { Overdamped }) \\
& v_{t}(t)=\left(A_{1}+A_{2} t\right) e^{-\alpha t} \quad(\text { Critically damped }) \\
& v_{t}(t)=\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t} \quad(\text { Underdamped })
\end{aligned}
$$

- The steady-state response is the final value of $v(t)$.
- In the circuit in Figure 7.18 the final value of the capacitor voltage is the same as the source voltage V_{s}.
- Hence,

$$
v_{s s}(t)=v(\infty)=V_{s}
$$

- Thus, the complete solutions for the overdamped, and critically damped cases are:

$$
\begin{aligned}
& v(t)=V_{s}+A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \quad(\text { Overdamped }) \\
& v(t)=V_{s}+\left(A_{1}+A_{2} t\right) e^{-\alpha t} \quad(\text { Critically damped }) \\
& \left.v(t)=V_{s}+\left(A_{1} \cos \omega_{d} t+A_{2} \sin \omega_{d} t\right) e^{-\alpha t} \quad \text { (Underdamped }\right)
\end{aligned}
$$

- The values of the constants A_{1} and A_{2} are obtained from the initial conditions: $v(0)$ and $d v(0) / d t$.
- Note: v and i are respectively, the voltage across the capacitor and the current through the inductor.
- Therefore, the Eq. 7.11 only applies for finding v.
- But once the capacitor voltage $v_{C}=v$ is known we can determine $i=C d v / d t$, which is the same current through the capacitor, inductor and resistor.
- Hence, the voltage across the resistor is $v_{R}=i R$, while the inductor voltage is $v_{L}=L d i / d t$.
- Alternatively, the complete response for any variable $x(t)$ can be found directly, because it has the general from

$$
x(t)=x_{s s}(t)+x_{t}(t)
$$

Where the $x_{s s}=x(\infty)$ is the final value and $x_{t}(t)$ is the transient response. The final value is found as in Section 7.2.

- Example

For the circuit in Figure 7.19, find $v(t)$ and $i(t)$ for $t>$ 0 . Consider these cases: $\mathrm{R}=5 \Omega$.

Figure 7.19

For $\mathrm{t}<0$, the switch is closed.
The capacitor behaves like an open circuit while the inductor acts like a short circuit.
The initial current through the inductor is

$$
i(0)=\frac{24}{5+1}=4 A
$$

And the initial voltage across the capacitor is the same as the voltage across the $1-\Omega$ resistor; that is,

$$
v(0)=1 i(0)=4 V
$$

For $\mathrm{t}>0$, the switch is opened, so the $1-\Omega$ resistor disconnected.
What remains is the series RLC circuit with the voltage source.
The characteristic roots are determined as follows.

$$
\begin{aligned}
& \alpha=\frac{R}{2 L}=\frac{5}{2 \times 1}=2.5 \\
& \omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{1 \times 0.25}}=2 \\
& s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-1,-4
\end{aligned}
$$

Since $\alpha>\omega_{0}$, we have the overdamped natural response.
The total response is therefore

$$
v(t)=v_{s s}+\left(A_{1} e^{-t}+A_{2} e^{-4 t}\right)
$$

where $v_{s s}$ is the steady-state response. It is the final value of the capacitor voltage.
In Figure $7.18 v_{f}=24 \mathrm{~V}$. Thus,

$$
v(t)=24+\left(A_{1} e^{-t}+A_{2} e^{-4 t}\right)
$$

Find A_{1} and A_{2} using the initial conditions

$$
v(0)=4=24+A_{1}+A_{2}
$$

or

$$
-20=A_{1}+A_{2}
$$

The current through the inductor cannot change abruptly and is the same current through the capacitor at $t=0^{+}$because the inductor and capacitor are now in series.

Hence,

$$
\begin{aligned}
& i(0)=C \frac{d v(0)}{d t}=4 \\
& \frac{d v(0)}{d t}=\frac{4}{C}=\frac{4}{0.25}=16
\end{aligned}
$$

From $v(t)=24+\left(A_{1} e^{-t}+A_{2} e^{-4 t}\right)$,

$$
\frac{d v}{d t}=-A_{1} e^{-t}-4 A_{2} e^{-4 t}
$$

At $t=0$,

$$
\frac{d v(0)}{d t}=16=-A_{1}-4 A_{2}
$$

Thus,

$$
A_{1}=-64 / 3 \text { and } A_{2}=4 / 3 .
$$

and

$$
v(t)=24+\frac{4}{3}\left(-16 e^{-t}+e^{-4 t}\right) V
$$

since the inductor and capacitor are in series for $t>$ 0 , the inductor current is the same as the capacitor current.

Hence,

$$
i(t)=C \frac{d v}{d t}
$$

Therefore,

$$
i(t)=\frac{4}{3}\left(4 e^{-t}-e^{-4 t}\right) A
$$

Note that $i(0)=4 \mathrm{~A}$, as expected

7.6 Step Response of a Parallel RLC Circuit

- Consider the parallel RLC circuit shown in Figure 7.20 .

Figure 7.20

- Objective:

Find i due to a sudden application of a dc current.

- Applying KCL at the top node for $t>0$,

$$
\frac{v}{R}+i+C \frac{d v}{d t}=I_{s}
$$

But

$$
v=L \frac{d i}{d t}
$$

Substituting for v and dividing by $L C$,

$$
\frac{d^{2} i}{d t^{2}}+\frac{1}{R C} \frac{d i}{d t}+\frac{i}{L C}=\frac{I_{s}}{L C}
$$

- The complete solution consists of the transient response $i_{t}(t)$ and the steady-state response $i_{s s}$;

$$
i(t)=i_{t}(t)+i_{s s}(t)
$$

- The steady-state response is the final value of i.
- In the circuit in Figure 7.20, the final value of the current through the inductor is the same as the source current I_{s},
- Thus,

$$
\begin{aligned}
\mathrm{i}(\mathrm{t})= & \mathrm{I}_{\mathrm{s}}+\mathrm{A}_{1} \mathrm{e}^{\mathrm{s}_{1} t}+\mathrm{A}_{2} \mathrm{e}^{\mathrm{s}_{2} t} \\
& \rightarrow \text { Overdamped } \\
\mathrm{i}(\mathrm{t})= & \mathrm{I}_{\mathrm{s}}+\left(\mathrm{A}_{1}+\mathrm{A}_{2} \mathrm{t}\right) \mathrm{e}^{-\alpha \mathrm{t}} \\
& \rightarrow \text { Critically damped } \\
\mathrm{i}(\mathrm{t})= & \mathrm{I}_{\mathrm{s}}+\left(\mathrm{A}_{1} \cos \omega_{\mathrm{d}} \mathrm{t}+\mathrm{A} 2 \sin \omega_{\mathrm{d}} \mathrm{t}\right) \mathrm{e}^{-\alpha \mathrm{t}} \\
& \rightarrow \text { Underdamped }
\end{aligned}
$$

- The constants A_{1} and A_{2} in each case can be determined from the initial conditions for i and $d i / d t$.
- First, find the inductor current i.
- Once the inductor current $i_{L}=i$ is known, we can find $v=L d i / d t$, which is the same voltage across inductor, capacitor and resistor.
- Hence, the current through the resistor is $i_{R}=v / R$, while the capacitor current is $i_{C}=C d v / d t$.
- Alternatively, the complete response for any variable $x(t)$ may be found directly, using

$$
x(t)=x_{s s}(t)+x_{t}(t)
$$

where $x_{s s}$ and x_{t} are its final value and transient response, respectively.

- Example

In the circuit in Figure 7.21 find $i(t)$ and $i_{R}(t)$ for $t>$ 0 .

Figure 7.21

For $\mathrm{t}<0$, the switch is open and the circuit is partitioned into two independent subcircuits.
The 4-A current flows through the inductor, so that

$$
i(0)=4 \mathrm{~A}
$$

Since $30 u(-t)=30$ when $t<0$ and 0 when $t>0$, the voltage source is operative for $t<0$ under consideration.
The capacitor acts like an open circuit and the voltage across it is the same as the voltage across the $20-\Omega$ resistor connected in parallel with it.

By voltage division, the initial capacitor voltage is

$$
v(0)=\frac{20}{20+20}(30)=15 \mathrm{~V}
$$

For $\mathrm{t}>0$, the switch is closed and we have a parallel RLC circuit with a current source.
The voltage source is off or short-circuited.
The two $20-\Omega$ resistors are now in parallel.
They are combined to give $R=20 \| 20=10 \Omega$.
The characteristic roots are determined as follows:

$$
\begin{gathered}
\alpha=\frac{1}{2 R C}=\frac{1}{2 \times 10 \times 8 \times 10^{-3}}=6.25 \\
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{20 \times 8 \times 10^{-3}}}=2.5 \\
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}=-6.25 \pm \sqrt{39.0625-6.25} \\
=-6.25 \pm 5.7282
\end{gathered}
$$

or

$$
s_{1}=-11.978, \quad s_{2}=-0.5218
$$

Since $\alpha>\omega_{0}$, we have the overdamped case. Hence,

$$
i(t)=I_{s}+A_{1} e^{-11.978 t}+A_{2} e^{-0.5218 t}
$$

where $I_{s}=4$ is the final value of $i(t)$.
Now use the initial conditions to determine A_{1} and A_{2}.

At $t=0$,

$$
i(0)=4=4+\mathrm{A}_{1}+\mathrm{A}_{2}
$$

$$
\mathrm{A}_{2}=-\mathrm{A}_{1}
$$

Taking the derivative of $i(t)$ in $i(t)=I_{s}+A_{l} e^{-11.978 t}+$ $A_{2} e^{-0.5218 t}$

$$
\frac{d i}{d t}=-11.978 A_{1} e^{-11.978 t}-0.5218 A_{2} e^{-0.5218 t}
$$

so that at $t=0$,

$$
\frac{d i(0)}{d t}=-11.978 A_{1}-0.5218 A_{2}
$$

But

$$
L \frac{d i(0)}{d t}=v(0)=15 \Rightarrow \frac{d i(0)}{d t}=\frac{15}{L}=\frac{15}{20}=0.75
$$

Thus,

$$
\begin{aligned}
& 0.75=(11.978-0.5218) A_{2} \\
& A_{2}=0.0655, A_{1}=-0.0655
\end{aligned}
$$

The complete solution as

$$
i(t)=4+0.0655\left(e^{-0.5218 t}-e^{-11.978 t}\right) \mathrm{A}
$$

From $i(t)$, we obtain $v(t)=L d i / d t$ and

$$
i_{R}(t)=\frac{v(t)}{20}=\frac{L}{20} \frac{d i}{d t}=0.785 e^{-11.978 t}-0.0342 e^{-0.5218 t} A
$$

7.7 General Second-Order Circuits

- Given a second-order circuit, we determine its step response $x(t)$ (which may be voltage or current) by taking the following four steps:

1. First, determine the initial conditions $x(0)$ and $d x(0) / d t$ and the final value $x(\infty)$ as discussed in Section 7.2.
2. Find the transient response $x_{t}(t)$ by applying KCL and KVL. Once a second-order differential equation is obtained, determine its characteristic roots. Depending on whether the response is overdamped, critically damped, or underdamped, we obtain $x_{t}(t)$ with two unknown constant as we did in the previous sections.
3. Obtain the forced response as

$$
x_{f}(t)=x(\infty)
$$

where $x(\infty)$ is the final value of x, obtained in Step 1.
4. The total response is now found as the sum of the transient response and steady-state response

$$
x(t)=x_{t}(t)+x_{s s}(t)
$$

Finally determine the constant associated with the transient response by imposing the initial conditions $x(0)$ and $d x(0) / d t$, determined in step 1 .

- Example:

Find the complete response v and then i for $t>0$ in the circuit of Figure 7.22.

Figure 7.22

First find the initial and final values.
At $t>0^{-}$, the circuit is at steady state. The switch is open, the equivalent circuit is shown in Figure 7.23.

Figure 7.23

From the figure,

$$
v\left(0^{-}\right)=12 V \quad i\left(0^{-}\right)=0
$$

At $t>0^{+}$, the switch is closed, the equivalent circuit is in Figure 7.24.

Figure 7.24
By the continuity of capacitor voltage and inductor current,

$$
v\left(0^{+}\right)=v\left(0^{-}\right)=12 V \quad i\left(0^{+}\right)=i\left(0^{-}\right)=0
$$

To get $d v>\left(0^{+}\right) / d t$, use $\mathrm{C} d v / d t=i_{c}$ or $d v / d t=i_{C} / C$. Applying KCL at node a in Figure 7.24,

$$
\begin{aligned}
& i\left(0^{+}\right)=i_{c}\left(0^{+}\right)+\frac{v\left(0^{+}\right)}{2} \\
& 0=i_{c}\left(0^{+}\right)+\frac{12}{2} \quad \Rightarrow \quad i_{c}\left(0^{+}\right)=-6 A
\end{aligned}
$$

Hence

$$
\frac{d v\left(0^{+}\right)}{d t}=\frac{-6}{0.5}=-12 \mathrm{~V} / \mathrm{s}
$$

The final values are obtained when the inductor is replaced by a short circuit and the capacitor by an open circuit in Figure 7.24, giving

$$
i(\infty)=\frac{12}{4+2}=2 A \quad v(\infty)=2 i(\infty)=4 V
$$

Next, obtain the natural response for $t>0$.
By turning off the $12-\mathrm{V}$ voltage source, we have the circuit in Figure 7.25.

Figure 7.25
Applying KCL at node a in Figure 7.25 gives

$$
i=\frac{v}{2}+\frac{1}{2} \frac{d v}{d t}
$$

Applying KVL to the left mesh results in

$$
4 i+1 \frac{d i}{d t}+v=0
$$

Thus,

$$
2 v+2 \frac{d v}{d t}+\frac{1}{2} \frac{d v}{d t}+\frac{1}{2} \frac{d^{2} v}{d t^{2}}+v=0
$$

Or

$$
\frac{d^{2} v}{d t^{2}}+5 \frac{d v}{d t}+6 v=0
$$

From this, we obtain the characteristic equation as

$$
s^{2}+5 s+6=0
$$

With roots $\mathrm{s}=-2$ and $\mathrm{s}=-3$. Thus, the natural response is

$$
v_{n}(t)=A e^{-2 t}+B e^{-3 t}
$$

where A and B are unknown constants to be determined later.
The forced response is

$$
v_{f}(t)=v(\infty)=4
$$

The complete response is

$$
v(t)=v_{n}+v_{f}=4+A e^{-2 t}+B e^{-3 t}
$$

We now determine A and B using the initial values.
We know that $v(0)=12$, thus at $t=0$:

$$
12=4+A+B \quad \Rightarrow \quad A+B=8
$$

Taking the derivative of v in $v(t)=v_{n}+v_{f}=4+A e^{-2 t}+B e^{-3 t}$

$$
\frac{d v}{d t}=-2 A e^{-2 t}-3 B e^{-3 t}
$$

From $\frac{d v\left(0^{+}\right)}{d t}=\frac{-6}{0.5}=-12 V / s$, at $t=0$:

$$
-12=-2 A-3 B \quad \Rightarrow \quad 2 A+3 B=12
$$

Thus,

$$
A=12, \quad B=-4
$$

so that,

$$
v(t)=4+12 e^{-2 t}-4 e^{-3 t} V, \quad t>0
$$

From v, we can obtain other quantities of interest (refer to Figure 7.24):

$$
\begin{aligned}
i & =\frac{v}{2}+\frac{1}{2} \frac{d v}{d t}=2+6 e^{-2 t}-2 e^{-3 t}-12 e^{-2 t}+6 e^{-3 t} \\
& =2-6 e^{-2 t}+4 e^{-3 t} A, \quad t>0
\end{aligned}
$$

