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CHAPTER 7: SECOND-ORDER CIRCUITS

7.1 Introduction

e This chapter considers circuits with two storage
elements.

e Known as second-order circuits because their
responses are described by differential equations that
contain second derivatives.

e Example of second-order circuits are shown in figure
7.1to07.4.

Figure 7.1

Figure 7.2
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7.2 Finding Initial and Final Values

e Objective:
Find v(0),(0),dv(0)/dt ,di(0)/dt ,i(e0), v(0)

¢ Two key points:

(a)

(b)

The direction of the current i(f) and the
polarity of voltage v(z).

i C i C
=1 =1 =
e g e
Figure7.5

d | |

+ + +

PR | PR
Figure 7.6

The capacitor voltage is always continuous:
v(07) =v(07)
and the inductor current is always continuous:

i((07)=i(07)
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e Example:
The switch in Figure 7.7 has been closed for a long
time. It is open at t=0. Find

i(0M),v(0"),di(0%)/dt,dv(0")/dt ,i(e0), v(c0)

40 ¢ 025H

01F =

| = 4+

Figure 7.7

The switch is closed a long time before =0, thus
the circuit has reached dc steady state at # = 0.

The inductor — acts like a short circuit.

The capacitor — acts like an open circuit.

Figure 7.8
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1((07)= 12 =2A
4+72
v(0)=2i(0)=2(12)=4V
As the inductor current and capacitor voltage cannot
change abruptly,

(0" =i(07)=2A
v(0")=v(0") =4V

At t =07, the switch is open and the equvalent can
be drawn as:

2v @

Figure 7.9
i.(07)=i(0")=2A
, dv
Since CE = lc,dv/dt = lC/C and

dv(0") _ic(07) _ 2 90V
dt C 0.1
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Similarly,

Since Ldi/dt =v,,di/dt =v, | L, applying KVL
—124+4i(07)+v,(0")+v(0")=0
v, (07)=12-8-4=0

Thus,

di(0) _v,(0)_ 0 _ .
dt L 025

For t > (), the circuit undergoes transience.
But f — oo, the circuit reaches steady state again.
The inductor — acts like a short circuit.
The capacitor — acts like an open circuit.
4Q 1

— T

AN ——O———0———0
_I_

o

O

Figure 7.10
Thus,
i(0)=0A  v(e0)=12V
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7.3 The Source-Free Series RLC Circuit

¢ Consider the source-free series RLC circuit in Figure
7.11.

Figure 7.11

e The circuit is being excited by the energy initially
stired in the capacitor and inductor.

o V0 - the 1nitial capacitor voltage

[, - the initial inductor current

e Thus, att =0
|
v(O):Ef_ooldtzVo

i(0)=1,
e Applying KVL around the loop:

m+L@+lfim:0
dt C’

Differentiate with respect to #:
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d’i Rdi i
st =
dt- Ldt LC
- the second-order differential equation

di(0)

Ri(0)+ L= +V, =0

di(0) 1
=——(RI,+V
» L( 0 +V5)

e Leti = Ae” - the exponential form for 1 order
circuit

e Thus, we obtain

AR A
As’e” +——se" +—¢e" =0
L LC

Ae”| s +Bs+L)=O
L’ LC,
R 1

or s°+—s+—=0
L LC

This quadratic equation 1is known as the
characteristic equation since the root of the equation
dictate the character of i.

® The 2 roots are:
R \/ R Y 1
Ss=———+.| — | ——=
2L \\2L, LC
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R R T 1
S,=———l == | ———=
2L \\2L, LC

or

=—a+.\ &’ -}, s,=—0—a*-w} 1)

where

R 1
W, =—— (7.2)

Tor’ ° " JLC

a

The roots s,,5, are called naural frequencies,

measured in nepers per second (Np/s).
- they are associated with the natural response of the
circuit.

@, 1s known as the resonant frequency or strictly as
the undamped natural frequency, expressed in
radians per second (rad/s).

Q. 1s the neper frequency or the damping factor,
expressed in nepers per second.

2 possible solutions for i:

s Slt s Szt
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d’i Rdi i
st+——+
di* Ldtr LC

linear combination of the two distinct solutions i1

=( is a linear equation — any

and 1, is also a solution for the equation.
Thus,

crON 5yt St
i(t)=Ae" +Ae”
where A, and A, are determined from the initia

values £(0) and di(0)/dt

From Equation 7.1:

(1) If & > @, - overdamped case.

(1) If @ =@, - critically damped case.
(1) If @ <@, - underdamped case
Overdamped case:

- a > @, implies C > 4L/R2.

- both roots are negative and real.
- The response,

i(t)=Ae" +Ae™ (7.3)

which decays and approaches zero as ¢ increases as
shown in Figure 7.12
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Figure 7.12
® Critically Damped Case:

- = @, implies C = 4L/R2
_K
2L

_Slzszz—a:

The response,
i(t)=Ae “+Ae™ =A™
where A, = A + A,
- This cannot be the solution because the two initial
conditions cannot be satisfied with the single

constant A,.
- Let consider again:
d’i Rdi i
st =
dt- Ldt LC
- a=w,=R/2L, thus,

0
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2. .
d—;+2a@+a2i=0
dt dt

which is the 1% order differential equation with

solution f = Ae™™

which can be written as:

d ( u.
E(e z):A1

- Intergrating both sides:
e”i=At+A,
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or
. at
- Hence, the natural response of the critically
damped circuit is a sum of two terms: a negative

exponential and a negative exponential multiplied
by a linear term:

i()=(A, +At)™ (7.4)
i) A
0 i
Figure 7.13

e Underdamped Case:
- a < @, implies C <4L/ R’

- The roots can be written as:

5, = =0+ — (0} —a*) =—a+ jo,

5, =—0—— (0} —&*) =—a - jo,
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where @, = \/ a)g - 2 , which 1s called the
damping frequency.

Both @, and @, are natural frequencies because

they help determine the natural response.

@, is called the undamped natural frequency.

@, is called the damped natural frequency.

The natural response is
i(1) = Ae @) 4 A e HrIe)
= (Alej ol 4 A e )
- Using Euler’s identities,
e’® =cos6+ jsin6, e’/ =cos6— jsinb
- We get,
i(t)=e|A (cosw,t+ jsinw,t)+ A, (cosw,t— jsinw,t)]

i(t)=e|(A +A,))cosw,t+ j(A — A, )sinw t]
- Replacing constant (A +A,) and j(A —A,)

with constant B, and B,, we get

i(t)y=e “(B,cos@,t+B,sina,t) (7.5)
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- With the presence of sine and cosine functions, it
is clear that the natural response for this case is
exponentially damped and oscillatory in nature.

- The response has a time constant of 1/ and a

periodof T =271/ @,

i(2) A

Figure 7.14

e Conclusions:

(1) - The behaviour of such network is captured
by the idea of damping, which is the gradual
loss of the initial stored energy.

- The damping effect is due to the presence of
resistance R.

- The damping factor @@ determines the rate
at which the response is damped.

- If R=0, then & =0 and we have an LC

circuit with 1/ ~LC as the undamped

natural frequency. Since & < @, in this
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(i1)

(iii)

case, the response is not only undamped but
also oscillatory.

The circuit 1s said to be lossless because the
dissipating or damping element (R) 1is
absent.

By adjusting the value of R, the response
may be made undamped, overdamped,
critically damped or underdamped.
Oscillatory response is possible due to the
presence of the two types of storage
elements.

Having both L and C allows the flow of
energy back and forth between the two.

The damped oscillation exhibited by the
underdamped response is known as ringing.
It stems from the ability of the storage
elements L and C to transfer energy back
and forth between them.

It 1s difficult to differentiate between the
overdamped and critically damped response.
the critically damped response is borderline
and decays the fastest.

The overdamped has the longest settling
time because it takes the longest time to
dissipate the initial stored energy.
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- If we desire the fastest response without
oscillation or ringing, the critically damped
circuit is the right choice.

e Example:
In Figure 7.15, R=40Q,L=4H,C =1/4F.
Calculate the characteristic roots of the circuit. Is the
natural response overdamped, underdamped or
critically damped.

R L
——AMA— T ——
— —
'Ir-lifl
*
(v} v
Figure 7.15
R 1
o=—=5 w,=——==1

2L
The roots are
5, =0t} —@f =-5+25-1
s, =—0.101, s, =-9.899

Since @ > @, the response is overdamped.
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7.4 The Source-Free Parallel RLC Circuit

e Parallel RLC circuits find many practical
applications — e.g. incommunications networks and
filter designs.

e Consider the parallel RLC circuit shown in Figure

7.16:
7
e e e
R v L lfﬁv C =

e

|
| &< +

Figure 7.16

e Assume 1initial inductor current I, and initial
capacitor voltage V.

i(0)=1, = % [Cv(0)dt

v(0) =V,
¢ Since the three elements are in parallel, they have the
same voltage v across them.

e According to passive sign conention, the current is
entering each element
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- the current through each element is leaving the top
node.

® Thus, applying KCL at the top node gives

Vil asc® o

R L™ dt
e Taking the derivative with respect to ¢ and dividing
by C results in

d*v 1 dv 1
—+ +
dt RC dt LC

e Replace the first derivative by s and the second

v=0

derivative by s°.
e Thus,

1 1
s+—s+——=0
RC LC

® The roots of the characteristic equation are

2
P Ly
" 2rCc \\2rRC, LC

or
5, =—at.a’ o] (7.6)
where
0= @= a.7)
2RC JLC
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® There are three possible solutions, depending on
whether > @y, = @y, or a< .

Overdamped Case (o > ay)

® o> @y when L > ARC.
e The roots of the characteristic equation are real and
negative

® The response is

v(it)=Ae'" +Ae’” (7.8)

Critically Damped Case (a= @)

e For o=, L =4R"C.
® The roots are real and equal

® The response is

v(t)=(A +A)e™ (7.9)

Underdamped Case (o < ®q )

e When o < m,, L < 4R°C.

® The roots are complex and may be expressed as
S],g = -aij(()d
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Where

=Jw§—0{2

® The response is

v(t)=e " (A cosw,t + A, sin @,t) (7.10)

e The constants A1 and A2 in each case can be
determined from the initial conditions.
e We need v(0) and dv(0)/dt.

e The first term is known from:
v(0) =V,

¢ For second term is known by combining

i(0)=1, = % [Cv(r)dt

v(0) =V,
and
v l vdt+C@ 0
R L dt
dsS
E+IO+CdV(O)=O
R dt

or
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dv(0) _ (V,+RI,)
dt RC

® The voltage waveforms are similar to those shown in
Section 7.3.

e Having found the capacitor voltage v(¢) for the
parallel RLC circuit as shown above, we can readily
obtain other circuit quantities such as individual
element currents.

¢ For example, the resistor current is iy = v/R and the
capacitor voltage is v = C dv/dkt.

e Notice that we first found the inductor current i(¢) for
the RLC series circuit, whereas we first found the
capacitor voltage v(¢) for the parallel RLC circuit.

e Example:
In the parallel circuit of Figure 7.17, find v(¢) for ¢ >
0, assuming v(0) = 5V, i(0) = 0, L = 1H and C =
10mF. Consider these cases: R = 1.923Q, R = 5Q,
and R = 6.25Q.

CASE1 IfR=1923Q

1 1
o= = _3:26
2RC 2x1.923x10x10x10
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1 1
~JLC  1x10x107

Since & > @y, the response is overdamped.

@, =10

The roots of the characteristic equation are
5, =—a* .\’ —@} =-2,-50
and the corresponding response is
v(it)=Ae " +Ae™"
We now apply the initial conditions to get A; and A,.
v(0)=5=A+A,
dv(0) _ v(0)+ Ri(0)
dt RC
dv(0) 540
dt 1923x10x107
From v(t) = Ale_ZZ + A26_50t,

=260

dv _ _
—=-2Ae"" —50A,e™"
dt

At t=0,
260 - -2A1 — 50A2

Thus,
A, =10.625 and A, =-5.625
and

v(t) =10.625¢ % -5.625¢ "
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CASE2 When R =50

1 1
" 2RC 2x5x10x1073

While @) = 10 remains the same.

o =10

Since o= @y = 10, the response is critically damped.

Hence, s; =5, =-10, and
v(i)=(A, +A,te™”
To get A; and A,, we apply the initial conditions

v(0)=5=A4,
dv(0)  v(0)+Ri(0) 540 100
dt RC 5x10x107°
From v(t) = (A, + A, t)e ™,
% = (=104, —10A,t + A,)) e
At =0
100 =-10A; + A,
Thus,
A;=5and A, =150
and

v(t)=(5+150t)e™ v
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CASE3 When R =6.25 L2
1 1

a — —
2RC 2x625x10x107°

while @y = 10 remains the same.

As o< @y 1n this case, the response is underdamped.

The roots of the characteristic equation are
s,=—at.\ o’ —o; =-8% j6

Hence,
v(©) = (A; cos 6t + A, sin 61)e™
We now obtain A; and A,, as

w0) =5 =A,
dv(0) _ v(O)+Ri(0) _ 5+0 20
dt RC 6.25 x10 x 107
From w(f) = (A, cos 6t + A, sin 61)e’™,
% = (—8A4, cos 6 —8A, sin 6 — 64, sin 6¢

+6A, cos 6t) e

At =0,
80 =-8A; + 6A,;

Thus,

A;=5and A, =20.
and
v(t) = (5 cos 6t + 20 sin 61) ¢

195



NAMI| @PPKEE, USM EEE105: CIRCUIT THEORY

Note: by increasing the value of R, the degree of
damping decreases and the responses differ.

The responses for those three cases:

v(t) V
10 T—

Overdamped

WL & L O 1 00

Critically damped

I~

Figure 7.17
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7.5 Step Response of a Series RLC Circuit
e Revision: the step response is obtained by the sudden

application of a dc source.

e Consider the series RLC circuit shown in Figure

7.18.
= () R L {
78 S SR T e

Figure 7.18
e Applying KVL around the loop for ¢ > 0,

Lé+Ri+v=Vs
di

But

i=c?
dt

Substituting for i and rearranging terms,

d’v Rdv v %4

S

—t——+—=
dt- Ldt LC LC
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¢ The solution to the equation has two components: the
transient response v,(t) and the steady-state response

Ves(1);
v(it)=v,(t)+v, (1)
e The transient response v,(tf) is the component of the
total response that dies out with time.

e The form of the transient response is the same as the
form of the solution obtained in Section 7.3.

e Therefore, the transient response v/(t) for the
overdamped, underdamped and critically damped
cases are:

v.(t)=Ae" +A,e™ (Overdamped)
v,(t) = (A +At)e™ (Critically damped)
v,(t) = (A cosm,t+ A, sinw,t)e ™ (Underdamped)

e The steady-state response is the final value of v(z).

® In the circuit in Figure 7.18 the final value of the
capacitor voltage is the same as the source voltage

V.

e Hence,

v, (1) =v(ee)=V,
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® Thus, the complete solutions for the overdamped,
and critically damped cases are:

v(t) =V +Ae" +Ae™ (Overdamped)
v(t)=V_ +(A +At)e ™ (Critically damped)
v(t)=V_ +(A cosw,t+ A, sinw,t)e ™ (Underdamped)

(7.11)

e The values of the constants A; and A, are obtained
from the initial conditions: v(0) and dv(0)/d:t.

e Note: v and i are respectively, the voltage across the
capacitor and the current through the inductor.

® Therefore, the Eq. 7.11 only applies for finding v.

e But once the capacitor voltage v = v 1s known we
can determine i = C dv/dt, which 1s the same current
through the capacitor, inductor and resistor.

e Hence, the voltage across the resistor is v = iR,
while the inductor voltage 1s v; = L di/dkt.

e Alternatively, the complete response for any variable
x(t) can be found directly, because it has the general
from

x(t)=x_(t)+x, (1)
Where the x,, = x (o) 1s the final value and x,(¢) is the
transient response. The final value is found as in
Section 7.2.
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e Example
For the circuit in Figure 7.19, find v(¢) and i(?) for t >
0. Consider these cases: R =5 Q.

24V € 10

Figure 7.19

For t < 0, the switch 1s closed.

The capacitor behaves like an open circuit while the
inductor acts like a short circuit.

The initial current through the inductor is

i(O)=£=4A
5+1

And the initial voltage across the capacitor is the

same as the voltage across the 1-Q resistor; that is,
v(0)=1i(0) =4V

For t > 0, the switch is opened, so the 1-£2 resistor

disconnected.

What remains is the series RLC circuit with the

voltage source.

The characteristic roots are determined as follows.
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=2.5

1 1
a. = = = 2
" JLC VJ1x0.25

— 2 2 _
5, =0t —@f =—1,—4

Since @ > @,, we have the overdamped natural

response.
The total response is therefore

v(it)=v _+ (Ale" +Ae™ )
where v 1s the steady-state response. It 1s the final

value of the capacitor voltage.
In Figure 7.18 vy=24 V. Thus,

v(it)=24+(A4e" +Ae™)
Find A, and A, using the initial conditions
v(0)=4=24+A+A,
or
—-20=A, + A,
The current through the inductor cannot change
abruptly and is the same current through the

capacitor at r = 0" because the inductor and capacitor
are now 1in series.
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Hence,
i0=c®0 _y4
dv(0) _4 4 16
dt C 025
From v(t) = 24 + (Ale_t + Aze_4t ),
dv_ —~Ae” —4Ae™"
dt
Att =0,
WO _16=—_a —4a,
dt
Thus,

A; =-64/3 and A, = 4/3.
and

y(t) =24 + g (C16e +e )

since the inductor and capacitor are in series for ¢ >
0, the inductor current is the same as the capacitor
current.
Hence,

dv
i(t)y=C —
(1) 7
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Therefore,

i(t) = §(4€_t —e )A

Note that i(0) =4 A, as expected
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7.6 Step Response of a Parallel RLC Circuit

e Consider the parallel RLC circuit shown in Figure
7.20.

L@ ”052 R§ L% c=Fv

Figure 7.20
e Objective:
Find i due to a sudden application of a dc current.
e Applying KCL at the top node for ¢ > 0,

K+i+C@=1S
R dt
But
v:Lé
dt

Substituting for v and dividing by LC,
d’i 1 .di i 1

S

-+ +—— =
dt~ RCdt LC LC
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e The complete solution consists of the transient
response i/(f) and the steady-state response ig;
(1) =1,(t) + ig(2)
¢ The steady-state response is the final value of i.

® In the circuit in Figure 7.20, the final value of the
current through the inductor is the same as the source
current /,

e Thus,

i(t)=I +Ae" +A,e™
— Overdamped

i(t) = I + (A + Ayt)e™
— Critically damped

i(t) =L + (A cos Wgt + A2 sin m4t)e™
— Underdamped

e The constants A; and A, in each case can be
determined from the initial conditions for i and di/dkt.

e First, find the inductor current i.

e Once the inductor current i; = i 1S known, we can
find v = L di/dt, which is the same voltage across
inductor, capacitor and resistor.

e Hence, the current through the resistor is ix = V/R,
while the capacitor current is ic = C dv/dkt.

e Alternatively, the complete response for any variable
x(#) may be found directly, using
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x(1) = x45(1) + x,(2)
where x,, and x, are its final value and transient
response, respectively.

e Example
In the circuit in Figure 7.21 find i(r) and ix(¢) for ¢ >
0.

30u(—f) V

Figure 7.21

For t < 0, the switch is open and the circuit is

partitioned into two independent subcircuits.

The 4-A current flows through the inductor, so that
i(0)=4A

Since 30u(-f) = 30 when # < 0 and O when ¢ > 0, the

voltage source 1s operative for r < 0 wunder

consideration.

The capacitor acts like an open circuit and the

voltage across it is the same as the voltage across the

20-Q resistor connected in parallel with it.
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By voltage division, the initial capacitor voltage is

20
0=~ 30)=15V
VO = s 20

For t > 0, the switch 1s closed and we have a parallel
RLC circuit with a current source.

The voltage source 1s off or short-circuited.

The two 20-€2 resistors are now in parallel.

They are combined to give R = ZOHZO =10Q2.

The characteristic roots are determined as follows:

= I = I _3=6.25
2RC 2x10x8x10

1 1
- JLC 20 x8x107

s,=—at o' —w} =—6.25+./39.0625 - 6.25
=—6.25+5.7282

a

@, =2.5

or
s;=-11.978, S, =-0.5218

Since o > M, we have the overdamped case. Hence,
i(t) — Is + Ale-11.978t + A2e-0.5218t

where I, = 4 is the final value of i(z).

Now use the initial conditions to determine A; and

A,.
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L

_v() _ L di

At t=0,

i(0)=4=4+A+A,

Ar=-A,
Taking the derivative of i(¢) in i(f) = I, + A;e’77% +
A58

% =—11.9784,e""7" —0.52184,¢ """
[

so that at 7 =0,

910) _ _11.9784, - 0.52184,
dt
But
40 _ | 0)=15 di(0) _15_15 _ -«
d L 20
Thus,

0.75 = (11.978 — 0.5218)A,

A, = 0.0655, A; =-0.0655
The complete solution as

i(t) =4+ 0.0655 (6-0.521& . e-]].978t) A
From i(¢), we obtain v(¢) = L di / dt and

=0.785¢ 1™ — 0.0342¢ "1 A

20 20dt
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7.7 General Second-Order Circuits

e Given a second-order circuit, we determine its step
response x(¢) (which may be voltage or current) by
taking the following four steps:

1. First, determine the initial conditions x(0) and
dx(0)/dt and the final value x(o0) as discussed in
Section 7.2.

2. Find the transient response x,(¢) by applying KCL
and KVL. Once a second-order differential
equation is obtained, determine its characteristic
roots. Depending on whether the response is
overdamped, critically damped, or underdamped,
we obtain x,(¢) with two unknown constant as we
did in the previous sections.

3. Obtain the forced response as

X, (1) = x(c0)
where x(o0) 1s the final value of x, obtained in
Step 1.

4. The total response is now found as the sum of the
transient response and steady-state response

x(t)=x,()+x, (1)

209



NAMI| @PPKEE, USM EEE105: CIRCUIT THEORY

Finally determine the constant associated with the
transient response by imposing the initial
conditions x(0) and dx(0)/dt, determined in step 1.
e Example:
Find the complete response v and then i for # > 0 in
the circuit of Figure 7.22.

A0 RS
—AMA—— T

[ ==

b | st
=
Y |
A

r=1l

Figure 7.22

First find the initial and final values.

At t> 0, the circuit is at steady state. The switch is
open, the equivalent circuit is shown in Figure 7.23.

4Q ;
—
~O——0 0
_I_
12V v
O

Figure 7.23
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From the figure,
v(iO)=12V (0 )=0
At t> ()+, the switch is closed, the equivalent circuit

1s in Figure 7.24.

A0 IH !

b

12v @3 20 § v  ZX05F

Figure 7.24
By the continuity of capacitor voltage and inductor
current,

v(0")=v(0") =12V i(0")=i(0")=0
To getdv> (07)/dt,

use C dv/dt = i, or dv/dt = ic/C. Applying KCL
at node a in Figure 7.24,

v(0™)

2
ey, 12 P
0=1i.(0 )+E = 1.(07)=-06A

i(0")=i (0%)+
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Hence
dv(0") -6
dt

=—12V/s

The final values are obtained when the inductor is
replaced by a short circuit and the capacitor by an
open circuit in Figure 7.24, giving

. 12 .
l(00)= m =2A v(oo)z 21 (oo)= 4V

Next, obtain the natural response for r > (.
By turning off the 12-V voltage source, we have the
circuit in Figure 7.25.

7E o YR e s

a
+
20 v 7~ 5 F
Figure 7.25
Applying KCL at node a in Figure 7.25 gives

,vldv
=24

2 2.dt
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Applying KVL to the left mesh results in

4i+1ﬂ+v=0
dt
Thus,
2
2v+2@+1@+1d—;+v=0
dt 2dt 2dt
or
2
s 6=0
dt dt

From this, we obtain the characteristic equation as
s> +55+6=0
With roots s = -2 and s = -3. Thus, the natural
response 1s
. —2¢ —3t
v (t) = Ae ™ + Be
where A and B are unknown constants to be

determined later.
The forced response is

V(1) =v(eo)=4
The complete response is

v(t)=v,+v, =4+ Ae” +Be ™

We now determine A and B using the initial values.
We know that v(0) = 12, thus at #=0:
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12=4+A+B = A+B=8

Taking the derivative of % n
v()=v,+v, =4+ Ae" +Be ™

dv =-2Ae ¥ —3Be™
dt

From dC ):_62—12V/S,at t=0:
dt 0.5

—-12=-2A-3B = 2A+3B=12
Thus,
A=12, B=-4
so that,
v(it)=4+12¢ —4e'V, >0

From v, we can obtain other quantities of interest
(refer to Figure 7.24):

i=—+——=2+6e" —2e —12¢* + 6

=2—6¢ " +4e"A, t>0
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