CHAPTER 7: SECOND-ORDER CIRCUITS

7.1 Introduction

- This chapter considers circuits with two storage elements.
- Known as second-order circuits because their responses are described by differential equations that contain second derivatives.
- Example of second-order circuits are shown in figure 7.1 to 7.4.

Figure 7.2

Figure 7.3

Figure 7.4

7.2 Finding Initial and Final Values

• Objective:

Find $v(0), i(0), dv(0)/dt, di(0)/dt, i(\infty), v(\infty)$

- Two key points:
 - (a) The direction of the current i(t) and the polarity of voltage v(t).

Figure 7.5

Figure 7.6

(b) The capacitor voltage is always continuous:

$$v(0^+) = v(0^-)$$

and the inductor current is always continuous:

$$i(0^+) = i(0^-)$$

• Example:

The switch in Figure 7.7 has been closed for a long time. It is open at t = 0. Find $i(0^+), v(0^+), di(0^+)/dt, dv(0^+)/dt, i(\infty), v(\infty)$

Figure 7.7

The switch is closed a long time before t = 0, thus the circuit has reached dc steady state at t = 0. The inductor – acts like a short circuit. The capacitor – acts like an open circuit.

Figure 7.8

$$i(0^{-}) = \frac{12}{4+2} = 2A$$

 $v(0^{-}) = 2i(0^{-}) = 2(2) = 4V$

As the inductor current and capacitor voltage cannot change abruptly,

$$i(0^+) = i(0^-) = 2A$$

 $v(0^+) = v(0^-) = 4V$

At $t = 0^+$, the switch is open and the equvalent can be drawn as:

Figure 7.9

$$i_{C}(0^{+}) = i(0^{+}) = 2A$$

Since $C \frac{dv}{dt} = i_{C}, dv/dt = i_{C}/C$ and
 $\frac{dv(0^{+})}{dt} = \frac{i_{C}(0^{+})}{C} = \frac{2}{0.1} = 20$ V/s

Similarly, Since $L di/dt = v_L$, $di/dt = v_L/L$, applying KVL $-12 + 4i(0^+) + v_L(0^+) + v(0^+) = 0$ $v_L(0^+) = 12 - 8 - 4 = 0$

Thus,

$$\frac{di(0^+)}{dt} = \frac{v_L(0^+)}{L} = \frac{0}{0.25} = 0 \,\text{A/s}$$

For t > 0, the circuit undergoes transience. But $t \rightarrow \infty$, the circuit reaches steady state again. The inductor – acts like a short circuit. The capacitor – acts like an open circuit.

Figure 7.10

Thus,

 $i(\infty) = 0$ A $v(\infty) = 12$ V

7.3 The Source-Free Series RLC Circuit

• Consider the source-free series RLC circuit in Figure 7.11.

Figure 7.11

- The circuit is being excited by the energy initially stired in the capacitor and inductor.
- V_0 the initial capacitor voltage
 - I_0 the initial inductor current
- Thus, at t = 0

$$v(0) = \frac{1}{C} \int_{-\infty}^{0} i dt = V_0$$
$$i(0) = I_0$$

• Applying KVL around the loop:

$$Ri + L\frac{di}{dt} + \frac{1}{C}\int_{-\infty}^{t} idt = 0$$

Differentiate with respect to *t*:

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

- the second-order differential equation

$$Ri(0) + L\frac{di(0)}{dt} + V_0 = 0$$
$$\frac{di(0)}{dt} = -\frac{1}{L}(RI_0 + V_0)$$

- Let $i = Ae^{st}$ the exponential form for 1^{st} order circuit
- Thus, we obtain

$$As^{2}e^{st} + \frac{AR}{L}se^{st} + \frac{A}{LC}e^{st} = 0$$
$$Ae^{st}\left(s^{2} + \frac{R}{L}s + \frac{1}{LC}\right) = 0$$
or
$$s^{2} + \frac{R}{L}s + \frac{1}{LC} = 0$$

This quadratic equation is known as the *characteristic equation* since the root of the equation dictate the character of *i*.

• The 2 roots are:

$$s_1 = -\frac{R}{2L} + \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$s_2 = -\frac{R}{2L} - \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

or

$$s_1 = -\alpha + \sqrt{\alpha^2 - \omega_0^2}, \quad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_0^2}$$
 (7.1)

where

$$\alpha = \frac{R}{2L}, \qquad \omega_0 = \frac{1}{\sqrt{LC}} \tag{7.2}$$

- The roots s_1, s_2 are called naural frequencies, measured in nepers per second (Np/s).
 - they are associated with the natural response of the circuit.
- ω_0 is known as the resonant frequency or strictly as the undamped natural frequency, expressed in radians per second (rad/s).
- α is the neper frequency or the damping factor, expressed in nepers per second.
- 2 possible solutions for *i*:

$$i_1 = A_1 e^{s_1 t}, \qquad i_2 = A_2 e^{s_2 t}$$

• $\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$ is a linear equation – any linear combination of the two distinct solutions i_1 and i_2 is also a solution for the equation. Thus,

$$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

where A_1 and A_2 are determined from the initia values i(0) and di(0)/dt

- From Equation 7.1:
 - (i) If $\alpha > \omega_0$ overdamped case.
 - (ii) If $\alpha = \omega_0$ critically damped case.

(iii) If $\alpha < \omega_0$ - underdamped case

- Overdamped case:
 - $\alpha > \omega_0$ implies $C > 4L/R^2$.
 - both roots are negative and real.
 - The response,

$$i(t) = A_1 e^{s_1 t} + A_2 e^{s_2 t}$$
(7.3)

which decays and approaches zero as *t* increases as shown in Figure 7.12

Figure 7.12

• Critically Damped Case:

-
$$\alpha = \omega_0$$
 implies $C = 4L/R^2$

$$-s_1 = s_2 = -\alpha = -\frac{R}{2L}$$

- The response,

$$i(t) = A_1 e^{-\alpha t} + A_2 e^{-\alpha t} = A_3 e^{-\alpha t}$$

where $A_3 = A_1 + A_2$

- This cannot be the solution because the two initial conditions cannot be satisfied with the single constant A_3 .
- Let consider again:

$$\frac{d^2i}{dt^2} + \frac{R}{L}\frac{di}{dt} + \frac{i}{LC} = 0$$

- $\alpha = \omega_0 = R/2L$, thus,

$$\frac{d^{2}i}{dt^{2}} + 2\alpha \frac{di}{dt} + \alpha^{2}i = 0$$
$$\frac{d}{dt} \left(\frac{di}{dt} + \alpha i \right) + \alpha \left(\frac{di}{dt} + \alpha i \right) = 0$$

- Let,

$$f = \frac{di}{dt} + \alpha i$$

- Thus,

$$\frac{df}{dt} + \alpha f = 0$$

which is the 1st order differential equation with solution $f = A_1 e^{-\alpha t}$

- So,

$$\frac{di}{dt} + \alpha i = A_1 e^{-\alpha t}$$
$$e^{\alpha t} \frac{di}{dt} + e^{\alpha t} \alpha i = A_1$$

which can be written as:

$$\frac{d}{dt} \left(e^{\alpha t} i \right) = A_1$$

- Intergrating both sides:

$$e^{\alpha t}i = A_1 t + A_2$$

or

$$i = (A_1 t + A_2)e^{\alpha t}$$

- Hence, the natural response of the critically damped circuit is a sum of two terms: a negative exponential and a negative exponential multiplied by a linear term:

$$i(t) = (A_2 + A_1 t)e^{-\alpha t}$$
 (7.4)

Figure 7.13

- Underdamped Case:
 - $\alpha < \omega_0$ implies $C < 4L/R^2$
 - The roots can be written as:

$$s_1 = -\alpha + \sqrt{-(\omega_0^2 - \alpha^2)} = -\alpha + j\omega_d$$
$$s_2 = -\alpha - \sqrt{-(\omega_0^2 - \alpha^2)} = -\alpha - j\omega_d$$

where $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$, which is called the *damping frequency*.

- Both ω_0 and ω_d are natural frequencies because they help determine the natural response.
- ω_0 is called the undamped natural frequency.
- ω_d is called the damped natural frequency.
- The natural response is

$$i(t) = A_1 e^{-(\alpha - j\omega_d)t} + A_2 e^{-(\alpha + j\omega_d)t}$$
$$= e^{-\alpha t} \left(A_1 e^{j\omega_d t} + A_2 e^{-j\omega_d t} \right)$$

- Using Euler's identities,

$$e^{j\theta} = \cos \theta + j \sin \theta, \quad e^{-j\theta} = \cos \theta - j \sin \theta$$

- We get,
 $i(t) = e^{-\alpha t} \left[A_1 (\cos \omega_d t + j \sin \omega_d t) + A_2 (\cos \omega_d t - j \sin \omega_d t) \right]$

$$i(t) = e^{-\alpha t} \left[(A_1 + A_2) \cos \omega_d t + j(A_1 - A_2) \sin \omega_d t \right]$$

- Replacing constant $(A_1 + A_2)$ and $j(A_1 - A_2)$
with constant B_1 and B_2 , we get

$$i(t) = e^{-\alpha t} \left(B_1 \cos \omega_d t + B_2 \sin \omega_d t \right) (7.5)$$

- With the presence of sine and cosine functions, it is clear that the natural response for this case is exponentially damped and oscillatory in nature.
- The response has a time constant of $1/\alpha$ and a period of $T = 2\pi / \omega_d$

Figure 7.14

- Conclusions:
 - (i) The behaviour of such network is captured by the idea of damping, which is the gradual loss of the initial stored energy.
 - The damping effect is due to the presence of resistance R.
 - The damping factor α determines the rate at which the response is damped.
 - If R = 0, then $\alpha = 0$ and we have an LC circuit with $1/\sqrt{LC}$ as the undamped natural frequency. Since $\alpha < \omega_0$ in this

case, the response is not only undamped but also oscillatory.

- The circuit is said to be *lossless* because the dissipating or damping element (*R*) is absent.
- By adjusting the value of *R*, the response may be made undamped, overdamped, critically damped or underdamped.
- (ii) Oscillatory response is possible due to the presence of the two types of storage elements.
 - Having both *L* and *C* allows the flow of energy back and forth between the two.
 - The damped oscillation exhibited by the underdamped response is known as ringing.
 - It stems from the ability of the storage elements *L* and *C* to transfer energy back and forth between them.
- (iii) It is difficult to differentiate between the overdamped and critically damped response.
 - the critically damped response is borderline and decays the fastest.
 - The overdamped has the longest settling time because it takes the longest time to dissipate the initial stored energy.

- If we desire the fastest response without oscillation or ringing, the critically damped circuit is the right choice.
- Example:

In Figure 7.15, $R = 40\Omega$, L = 4H, C = 1/4F. Calculate the characteristic roots of the circuit. Is the natural response overdamped, underdamped or critically damped.

Figure 7.15

$$\alpha = \frac{R}{2L} = 5, \quad \omega_0 = \frac{1}{\sqrt{LC}} = 1$$

The roots are

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -5 \pm \sqrt{25 - 1}$$

$$s_1 = -0.101, \quad s_2 = -9.899$$

Since $\alpha > \omega_0$, the response is overdamped.

7.4 The Source-Free Parallel RLC Circuit

- Parallel RLC circuits find many practical applications e.g. incommunications networks and filter designs.
- Consider the parallel RLC circuit shown in Figure 7.16:

Figure 7.16

• Assume initial inductor current I_0 and initial capacitor voltage V_0 .

$$i(0) = I_0 = \frac{1}{L} \int_{\infty}^{0} v(t) dt$$

 $v(0) = V_0$

- Since the three elements are in parallel, they have the same voltage *v* across them.
- According to passive sign conention, the current is entering each element

- the current through each element is leaving the top node.
- Thus, applying KCL at the top node gives

$$\frac{v}{R} + \frac{1}{L} \int_{-\infty}^{t} v \, dt + C \frac{dv}{dt} = 0$$

• Taking the derivative with respect to *t* and dividing by *C* results in

$$\frac{d^2v}{dt^2} + \frac{1}{RC}\frac{dv}{dt} + \frac{1}{LC}v = 0$$

- Replace the first derivative by s and the second derivative by s^2 .
- Thus,

$$s^2 + \frac{1}{RC}s + \frac{1}{LC} = 0$$

• The roots of the characteristic equation are

$$s_{1,2} = -\frac{1}{2RC} \pm \sqrt{\left(\frac{1}{2RC}\right)^2 - \frac{1}{LC}}$$

or

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} \tag{7.6}$$

where

$$\alpha = \frac{1}{2RC}, \ \omega_0 = \frac{1}{\sqrt{LC}}$$
(7.7)

• There are three possible solutions, depending on whether $\alpha > \omega_0$, $\alpha = \omega_0$, or $\alpha < \omega_0$.

Overdamped Case ($\alpha > \omega_0$)

- $\alpha > \omega_0$ when $L > 4R^2C$.
- The roots of the characteristic equation are real and negative
- The response is

$$v(t) = A_1 e^{s1t} + A_2 e^{s2t}$$
(7.8)

Critically Damped Case $(\alpha = \omega_0)$

- For $\alpha = \omega$, $L = 4R^2C$.
- The roots are real and equal
- The response is

$$v(t) = (A_1 + A_2 t) e^{-\alpha t}$$
 (7.9)

Underdamped Case $(\alpha < \omega_0)$

- When $\alpha < \omega_0$, L < 4R²C.
- The roots are complex and may be expressed as $S_{1,2} = -\alpha \pm j\omega_d$

Where

$$\boldsymbol{\omega}_{d} = \sqrt{\boldsymbol{\omega}_{0}^{2} - \boldsymbol{\alpha}^{2}}$$

• The response is

$$v(t) = e^{-\alpha t} \left(A_1 \cos \omega_d t + A_2 \sin \omega_d t \right) (7.10)$$

- The constants A1 and A2 in each case can be determined from the initial conditions.
- We need v(0) and dv(0)/dt.
- The first term is known from:

$$v(0) = V_0$$

• For second term is known by combining

$$i(0) = I_0 = \frac{1}{L} \int_{\infty}^{0} v(t) dt$$

 $v(0) = V_0$

and

$$\frac{v}{R} + \frac{1}{L} \int_{-\infty}^{t} v \, dt + C \frac{dv}{dt} = 0$$

as

$$\frac{V_0}{R} + I_0 + C\frac{dv(0)}{dt} = 0$$

or

$$\frac{dv(0)}{dt} = -\frac{(V_0 + RI_0)}{RC}$$

- The voltage waveforms are similar to those shown in Section 7.3.
- Having found the capacitor voltage *v*(*t*) for the parallel RLC circuit as shown above, we can readily obtain other circuit quantities such as individual element currents.
- For example, the resistor current is $i_R = v/R$ and the capacitor voltage is $v_C = C dv/dt$.
- Notice that we first found the inductor current *i*(*t*) for the RLC series circuit, whereas we first found the capacitor voltage *v*(*t*) for the parallel RLC circuit.
- Example:

In the parallel circuit of Figure 7.17, find v(t) for t > 0, assuming v(0) = 5V, i(0) = 0, L = 1H and C = 10mF. Consider these cases: $R = 1.923\Omega$, $R = 5\Omega$, and $R = 6.25\Omega$.

CASE 1 If $R = 1.923 \Omega$

$$\alpha = \frac{1}{2RC} = \frac{1}{2 x \, 1.923 \, x \, 10 \, x \, 10 \, x \, 10^{-3}} = 26$$

$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1 \, x \, 10 \, x \, 10^{-3}}} = 10$$

Since $\alpha > \omega_0$, the response is overdamped. The roots of the characteristic equation are

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -2,-50$$

and the corresponding response is

$$v(t) = A_1 e^{-2t} + A_2 e^{-50t}$$

We now apply the initial conditions to get A_1 and A_2 .

$$v(0) = 5 = A_1 + A_2$$

$$\frac{dv(0)}{dt} = -\frac{v(0) + Ri(0)}{RC}$$

$$\frac{dv(0)}{dt} = -\frac{5 + 0}{1.923 \times 10 \times 10^{-3}} = 260$$

From $v(t) = A_1 e^{-2t} + A_2 e^{-50t}$,

$$\frac{dv}{dt} = -2A_1e^{-2t} - 50A_2e^{-50t}$$

At t=0,

$$260 = -2A_1 - 50A_2$$

Thus,

$$A_1 = 10.625$$
 and $A_2 = -5.625$

and

$$v(t) = 10.625e^{-2t} - 5.625e^{-50t}$$

CASE 2 When $R = 5\Omega$

$$\alpha = \frac{1}{2RC} = \frac{1}{2 \ x \ 5 \ x \ 10 \ x \ 10^{-3}} = 10$$

While $\omega_0 = 10$ remains the same. Since $\alpha = \omega_0 = 10$, the response is critically damped. Hence, $s_1 = s_2 = -10$, and $v(t) = (A_1 + A_2 t)e^{-10t}$ To get A_1 and A_2 , we apply the initial conditions $v(0) = 5 = A_1$ $\frac{dv(0)}{dt} = -\frac{v(0) + Ri(0)}{RC} = -\frac{5+0}{5 x \, 10 \, x \, 10^{-3}} = 100$ From $v(t) = (A_1 + A_2 t)e^{-10t}$, $\frac{dv}{dt} = (-10A_1 - 10A_2t + A_2) e^{-10t}$ At t=0 $100 = -10A_1 + A_2$ Thus,

$$A_1 = 5$$
 and $A_2 = 150$

and

$$v(t) = (5 + 150t)e^{-10t} V$$

CASE 3 When
$$R = 6.25 \Omega$$

 $\alpha = \frac{1}{2RC} = \frac{1}{2 \times 6.25 \times 10 \times 10^{-3}} = 8$

while $\omega_0 = 10$ remains the same.

As $\alpha < \omega_0$ in this case, the response is underdamped. The roots of the characteristic equation are

$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -8 \pm j6$$

Hence,

$$v(t) = (A_1 \cos 6t + A_2 \sin 6t)e^{-8t}$$

We now obtain A_1 and A_2 , as

$$v(0) = 5 = A_{1}$$

$$\frac{dv(0)}{dt} = -\frac{v(0) + Ri(0)}{RC} = -\frac{5 + 0}{6.25 \times 10 \times 10^{-3}} = 80$$
From $v(t) = (A_{1} \cos 6t + A_{2} \sin 6t)e^{-8t}$,
$$\frac{dv}{dt} = (-8A_{1} \cos 6t - 8A_{2} \sin 6t - 6A_{1} \sin 6t + 6A_{2} \cos 6t)e^{-8t}$$
At $t = 0$,

$$80 = -8A_1 + 6A_2$$

Thus,

$$A_1 = 5$$
 and $A_2 = 20$.

and

$$v(t) = (5 \cos 6t + 20 \sin 6t) e^{-8t}$$

Note: by increasing the value of R, the degree of damping decreases and the responses differ. The responses for those three cases:

Figure 7.17

7.5 Step Response of a Series RLC Circuit

- Revision: the step response is obtained by the sudden application of a dc source.
- Consider the series RLC circuit shown in Figure 7.18.

• Applying KVL around the loop for t > 0,

$$L\frac{di}{dt} + Ri + v = V_s$$

But

$$i = C \frac{dv}{dt}$$

Substituting for *i* and rearranging terms,

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{v}{LC} = \frac{V_s}{LC}$$

The solution to the equation has two components: the transient response v_t(t) and the steady-state response v_{ss}(t);

$$v(t) = v_t(t) + v_{ss}(t)$$

- The transient response *v_t(t)* is the component of the total response that dies out with time.
- The form of the transient response is the same as the form of the solution obtained in Section 7.3.
- Therefore, the transient response $v_t(t)$ for the overdamped, underdamped and critically damped cases are:

$$v_{t}(t) = A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t} \quad (Overdamped)$$

$$v_{t}(t) = (A_{1} + A_{2}t)e^{-\alpha t} \quad (Critically damped)$$

$$v_{t}(t) = (A_{1}\cos\omega_{d}t + A_{2}\sin\omega_{d}t)e^{-\alpha t} \quad (Underdamped)$$

- The steady-state response is the final value of v(t).
- In the circuit in Figure 7.18 the final value of the capacitor voltage is the same as the source voltage V_s .
- Hence,

$$v_{ss}(t) = v(\infty) = V_s$$

• Thus, the complete solutions for the overdamped, and critically damped cases are:

 $v(t) = V_{s} + A_{1}e^{s_{1}t} + A_{2}e^{s_{2}t} \quad (Overdamped)$ $v(t) = V_{s} + (A_{1} + A_{2}t)e^{-\alpha t} \quad (Critically damped)$ $v(t) = V_{s} + (A_{1}\cos\omega_{d}t + A_{2}\sin\omega_{d}t)e^{-\alpha t} \quad (Underdamped)$ (7.11)

- The values of the constants A_1 and A_2 are obtained from the initial conditions: v(0) and dv(0)/dt.
- Note: *v* and *i* are respectively, the voltage across the capacitor and the current through the inductor.
- Therefore, the Eq. 7.11 only applies for finding *v*.
- But once the capacitor voltage $v_C = v$ is known we can determine $i = C \frac{dv}{dt}$, which is the same current through the capacitor, inductor and resistor.
- Hence, the voltage across the resistor is $v_R = iR$, while the inductor voltage is $v_L = L di/dt$.
- Alternatively, the complete response for any variable *x*(*t*) can be found directly, because it has the general from

$$x(t) = x_{ss}(t) + x_t(t)$$

Where the $x_{ss} = x (\infty)$ is the final value and $x_t(t)$ is the transient response. The final value is found as in Section 7.2.

• Example

For the circuit in Figure 7.19, find v(t) and i(t) for t > 0. Consider these cases: R = 5 Ω .

Figure 7.19

For t < 0, the switch is closed.

The capacitor behaves like an open circuit while the inductor acts like a short circuit.

The initial current through the inductor is

$$i(0) = \frac{24}{5+1} = 4A$$

And the initial voltage across the capacitor is the same as the voltage across the 1- Ω resistor; that is,

$$v(0) = 1i(0) = 4V$$

For t > 0, the switch is opened, so the 1- Ω resistor disconnected.

What remains is the series RLC circuit with the voltage source.

The characteristic roots are determined as follows.

$$\alpha = \frac{R}{2L} = \frac{5}{2 \times 1} = 2.5$$
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{1 \times 0.25}} = 2$$
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -1, -4$$

Since $\alpha > \omega_0$, we have the overdamped natural response.

The total response is therefore

$$v(t) = v_{ss} + (A_1 e^{-t} + A_2 e^{-4t})$$

where v_{ss} is the steady-state response. It is the final value of the capacitor voltage.

In Figure 7.18 $v_f = 24$ V. Thus,

$$v(t) = 24 + \left(A_1 e^{-t} + A_2 e^{-4t}\right)$$

Find A₁ and A₂ using the initial conditions

$$v(0) = 4 = 24 + A_1 + A_2$$

or

$$-20 = A_1 + A_2$$

The current through the inductor cannot change abruptly and is the same current through the capacitor at $t = 0^+$ because the inductor and capacitor are now in series. Hence,

$$i(0) = C \frac{dv(0)}{dt} = 4$$
$$\frac{dv(0)}{dt} = \frac{4}{C} = \frac{4}{0.25} = 16$$
From $v(t) = 24 + (A_1 e^{-t} + A_2 e^{-4t}),$
$$\frac{dv}{dt} = -A_1 e^{-t} - 4A_2 e^{-4t}$$
At $t = 0,$
$$\frac{dv(0)}{dt} = 16 = -A_1 - 4A_2$$

Thus,

$$A_1 = -64/3$$
 and $A_2 = 4/3$.

and

$$v(t) = 24 + \frac{4}{3} \left(-16e^{-t} + e^{-4t} \right) V$$

since the inductor and capacitor are in series for t > 0, the inductor current is the same as the capacitor current.

Hence,

$$i(t) = C\frac{dv}{dt}$$

Therefore,

$$i(t) = \frac{4}{3} \left(4e^{-t} - e^{-4t} \right) A$$

Note that i(0) = 4 A, as expected

7.6 Step Response of a Parallel RLC Circuit

• Consider the parallel RLC circuit shown in Figure 7.20.

Figure 7.20

• Objective:

Find *i* due to a sudden application of a dc current.

• Applying KCL at the top node for t > 0,

$$\frac{v}{R} + i + C\frac{dv}{dt} = I_s$$

But

$$v = L \frac{di}{dt}$$

Substituting for *v* and dividing by *LC*,

$$\frac{d^2i}{dt^2} + \frac{1}{RC}\frac{di}{dt} + \frac{i}{LC} = \frac{I_s}{LC}$$

• The complete solution consists of the transient response $i_t(t)$ and the steady-state response i_{ss} ;

 $i(t) = i_t(t) + i_{ss}(t)$

- The steady-state response is the final value of *i*.
- In the circuit in Figure 7.20, the final value of the current through the inductor is the same as the source current I_s ,
- Thus,

$$i(t) = I_s + A_1 e^{s_1 t} + A_2 e^{s_2 t}$$

 \rightarrow Overdamped

 $i(t) = I_s + (A_1 + A_2 t)e^{-\alpha t}$

 \rightarrow Critically damped

$$i(t) = I_s + (A_1 \cos \omega_d t + A_2 \sin \omega_d t)e^{-\alpha t}$$

 \rightarrow Underdamped

- The constants A_1 and A_2 in each case can be determined from the initial conditions for *i* and *di/dt*.
- First, find the inductor current *i*.
- Once the inductor current *i_L* = *i* is known, we can find *v* = *L di/dt*, which is the same voltage across inductor, capacitor and resistor.
- Hence, the current through the resistor is $i_R = v/R$, while the capacitor current is $i_C = C dv/dt$.
- Alternatively, the complete response for any variable *x*(*t*) may be found directly, using

 $x(t) = x_{ss}(t) + x_t(t)$

where x_{ss} and x_t are its final value and transient response, respectively.

• Example

In the circuit in Figure 7.21 find i(t) and $i_R(t)$ for t > 0.

Figure 7.21

For t < 0, the switch is open and the circuit is partitioned into two independent subcircuits.

The 4-A current flows through the inductor, so that

i(0) = 4 A

Since 30u(-t) = 30 when t < 0 and 0 when t > 0, the voltage source is operative for t < 0 under consideration.

The capacitor acts like an open circuit and the voltage across it is the same as the voltage across the 20- Ω resistor connected in parallel with it.

By voltage division, the initial capacitor voltage is

$$v(0) = \frac{20}{20 + 20}(30) = 15V$$

For t > 0, the switch is closed and we have a parallel RLC circuit with a current source.

The voltage source is off or short-circuited.

The two 20- Ω resistors are now in parallel.

They are combined to give $R = 20||20 = 10\Omega$.

The characteristic roots are determined as follows:

$$\alpha = \frac{1}{2RC} = \frac{1}{2 \times 10 \times 8 \times 10^{-3}} = 6.25$$
$$\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{20 \times 8 \times 10^{-3}}} = 2.5$$
$$s_{1,2} = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2} = -6.25 \pm \sqrt{39.0625 - 6.25}$$
$$= -6.25 \pm 5.7282$$

or

 $s_1 = -11.978$, $s_2 = -0.5218$ Since $\alpha > \omega_0$, we have the overdamped case. Hence, $i(t) = I_s + A_1 e^{-11.978t} + A_2 e^{-0.5218t}$ where $I_s = 4$ is the final value of i(t). Now use the initial conditions to determine A_1 and

 A_2 .

At t = 0, $i(0) = 4 = 4 + A_1 + A_2$ $A_2 = -A_1$ Taking the derivative of i(t) in $i(t) = I_s + A_1 e^{-11.978t} + A_2 e^{-0.5218t}$ $\frac{di}{dt} = -11.978A_1 e^{-11.978t} - 0.5218A_2 e^{-0.5218t}$ so that at t = 0, $\frac{di(0)}{dt} = -11.978A_1 - 0.5218A_2$ But $L\frac{di(0)}{dt} = v(0) = 15 \implies \frac{di(0)}{dt} = \frac{15}{L} = \frac{15}{20} = 0.75$

Thus,

$$0.75 = (11.978 - 0.5218)A_2$$

$$A_2 = 0.0655, A_1 = -0.0655$$

The complete solution as

$$i(t) = 4 + 0.0655 (e^{-0.5218t} - e^{-11.978t})$$
 A

From i(t), we obtain v(t) = L di / dt and

$$i_R(t) = \frac{v(t)}{20} = \frac{L}{20} \frac{di}{dt} = 0.785e^{-11.978t} - 0.0342e^{-0.5218t} A$$

7.7 General Second-Order Circuits

- Given a second-order circuit, we determine its step response *x*(*t*) (which may be voltage or current) by taking the following four steps:
 - 1. First, determine the initial conditions x(0) and dx(0)/dt and the final value $x(\infty)$ as discussed in Section 7.2.
 - 2. Find the transient response $x_t(t)$ by applying KCL and KVL. Once a second-order differential equation is obtained, determine its characteristic roots. Depending on whether the response is overdamped, critically damped, or underdamped, we obtain $x_t(t)$ with two unknown constant as we did in the previous sections.
 - 3. Obtain the forced response as

•

 $x_f(t) = x(\infty)$

where $x(\infty)$ is the final value of x, obtained in Step 1.

4. The total response is now found as the sum of the transient response and steady-state response

$$x(t) = x_t(t) + x_{ss}(t)$$

Finally determine the constant associated with the transient response by imposing the initial conditions x(0) and dx(0)/dt, determined in step 1.

• Example:

Find the complete response *v* and then *i* for t > 0 in the circuit of Figure 7.22.

Figure 7.22

First find the initial and final values.

At $t > 0^-$, the circuit is at steady state. The switch is open, the equivalent circuit is shown in Figure 7.23.

Figure 7.23

From the figure,

$$v(0^{-}) = 12V$$
 $i(0^{-}) = 0$

At $t > 0^+$, the switch is closed, the equivalent circuit is in Figure 7.24.

Figure 7.24

By the continuity of capacitor voltage and inductor current,

$$v(0^+) = v(0^-) = 12V$$
 $i(0^+) = i(0^-) = 0$

To get $dv > (0^+) / dt$,

use C $dv/dt = i_c$ or $dv/dt = i_C/C$. Applying KCL at node *a* in Figure 7.24,

$$i(0^{+}) = i_{c}(0^{+}) + \frac{\nu(0^{+})}{2}$$
$$0 = i_{c}(0^{+}) + \frac{12}{2} \implies i_{c}(0^{+}) = -6A$$

Hence

$$\frac{dv(0^+)}{dt} = \frac{-6}{0.5} = -12 \, V \, / \, s$$

The final values are obtained when the inductor is replaced by a short circuit and the capacitor by an open circuit in Figure 7.24, giving

$$i(\infty) = \frac{12}{4+2} = 2A \qquad v(\infty) = 2i(\infty) = 4V$$

Next, obtain the natural response for t > 0.

By turning off the 12-V voltage source, we have the circuit in Figure 7.25.

Figure 7.25

Applying KCL at node *a* in Figure 7.25 gives

$$i = \frac{v}{2} + \frac{1}{2} \frac{dv}{dt}$$

Applying KVL to the left mesh results in

$$4i + 1\frac{di}{dt} + v = 0$$

Thus,

$$2v + 2\frac{dv}{dt} + \frac{1}{2}\frac{dv}{dt} + \frac{1}{2}\frac{d^2v}{dt^2} + v = 0$$

or

$$\frac{d^2v}{dt^2} + 5\frac{dv}{dt} + 6v = 0$$

From this, we obtain the characteristic equation as

$$s^2 + 5s + 6 = 0$$

With roots s = -2 and s = -3. Thus, the natural response is

$$v_n(t) = Ae^{-2t} + Be^{-3t}$$

where A and B are unknown constants to be determined later.

The forced response is

$$v_f(t) = v(\infty) = 4$$

The complete response is

$$v(t) = v_n + v_f = 4 + Ae^{-2t} + Be^{-3t}$$

We now determine A and B using the initial values. We know that v(0) = 12, thus at t = 0: $12 = 4 + A + B \implies A + B = 8$ Taking the derivative of v in $v(t) = v_n + v_f = 4 + Ae^{-2t} + Be^{-3t}$ $\frac{dv}{dt} = -2Ae^{-2t} - 3Be^{-3t}$

From
$$\frac{dv(0^+)}{dt} = \frac{-6}{0.5} = -12 V / s$$
, at $t = 0$:
 $-12 = -2A - 3B \implies 2A + 3B = 12$

Thus,

$$A = 12, \qquad B = -4$$

so that,

$$v(t) = 4 + 12e^{-2t} - 4e^{-3t}V, \qquad t > 0$$

From v, we can obtain other quantities of interest (refer to Figure 7.24):

$$i = \frac{v}{2} + \frac{1}{2}\frac{dv}{dt} = 2 + 6e^{-2t} - 2e^{-3t} - 12e^{-2t} + 6e^{-3t}$$

$$= 2 - 6e^{-2t} + 4e^{-3t}A, \quad t > 0$$